Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Mitochondrial DNA B Resour ; 9(2): 223-226, 2024.
Article in English | MEDLINE | ID: mdl-38313464

ABSTRACT

This study reports the first mitogenome from the antipatharian (black coral) genus Cirrhipathes (GenBank accession number ON653414). The 20,452 bp mitochondrial genome of Cirrhipathes cf. anguina LS-2022 consists of 13 protein-coding genes, two rRNA genes, and two tRNA genes (trnM and trnW). The mitogenome is typical of other antipatharian families, including an A + T biased (64.1%) base composition and cytochrome c oxidase subunit I (COX1) intron with embedded homing endonuclease gene (HEG). A phylogenetic tree based on complete mitogenome sequences of currently available antipatharians indicates Cirrhipathes cf. anguina LS-2022 is sister and closely related to Stichopathes sp. SCBUCN-8849. However, it seems unlikely that intergeneric taxa share 99.97% similarity across their complete mitogenomes, raising questions about the current taxonomy of this group. This study highlights the need for additional vouchered antipatharian species to be sequenced so phylogenetic relationships can be compared with accepted taxonomy.

2.
PeerJ ; 11: e16510, 2023.
Article in English | MEDLINE | ID: mdl-38077446

ABSTRACT

Next-generation sequencing technologies, such as Nanopore MinION, Illumina Hiseq and Novaseq, and PacBio Sequel II, hold immense potential for advancing genomic research on non-model organisms, including the vast majority of marine species. However, application of these technologies to marine invertebrate species is often impeded by challenges in extracting and purifying their genomic DNA due to high polysaccharide content and other secondary metabolites. In this study, we help resolve this issue by developing and testing DNA extraction protocols for Kellet's whelk (Kelletia kelletii), a subtidal gastropod with ecological and commercial importance, by comparing four DNA extraction methods commonly used in marine invertebrate studies. In our comparison of extraction methods, the Salting Out protocol was the least expensive, produced the highest DNA yields, produced consistent high DNA quality, and had low toxicity. We validated the protocol using an independent set of tissue samples, then applied it to extract high-molecular-weight (HMW) DNA from over three thousand Kellet's whelk tissue samples. The protocol demonstrated scalability and, with added clean-up, suitability for RAD-seq, GT-seq, as well as whole genome sequencing using both long read (ONT MinION) and short read (Illumina NovaSeq) sequencing platforms. Our findings offer a robust and versatile DNA extraction and clean-up protocol for supporting genomic research on non-model marine organisms, to help mediate the under-representation of invertebrates in genomic studies.


Subject(s)
Gastropoda , Animals , Gastropoda/genetics , Genome/genetics , Genomics , DNA/genetics , Sequence Analysis, DNA/methods
3.
Sci Rep ; 13(1): 15810, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37737242

ABSTRACT

The Gila robusta species complex in the lower reaches of the Colorado River includes three nominal and contested species (G. robusta, G. intermedia, and G. nigra) originally defined by morphological and meristic characters. In subsequent investigations, none of these characters proved diagnostic, and species assignments were based on capture location. Two recent studies applied conservation genomics to assess species boundaries and reached contrasting conclusions: an ezRAD phylogenetic study resolved 5 lineages with poor alignment to species categories and proposed a single species with multiple population partitions. In contrast, a dd-RAD coalescent study concluded that the three nominal species are well-supported evolutionarily lineages. Here we developed a draft genome (~ 1.229 Gbp) to apply genome-wide coverage (10,246 SNPs) with nearly range-wide sampling of specimens (G. robusta N = 266, G. intermedia N = 241, and G. nigra N = 117) to resolve this debate. All three nominal species were polyphyletic, whereas 5 of 8 watersheds were monophyletic. AMOVA partitioned 23.1% of genetic variance among nominal species, 30.9% among watersheds, and the Little Colorado River was highly distinct (FST ranged from 0.79 to 0.88 across analyses). Likewise, DAPC identified watersheds as more distinct than species, with the Little Colorado River having 297 fixed nucleotide differences compared to zero fixed differences among the three nominal species. In every analysis, geography explains more of the observed variance than putative taxonomy, and there are no diagnostic molecular or morphological characters to justify species designation. Our analysis reconciles previous work by showing that species identities based on type location are supported by significant divergence, but natural geographic partitions show consistently greater divergence. Thus, our data confirm Gila robusta as a single polytypic species with roughly a dozen highly isolated geographic populations, providing a strong scientific basis for watershed-based future conservation.


Subject(s)
Cyprinidae , Cypriniformes , Animals , Phylogeny , Software , Genomics
4.
PLoS One ; 18(9): e0291503, 2023.
Article in English | MEDLINE | ID: mdl-37738222

ABSTRACT

The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa, Porites lobata, Montipora capitata, and Pocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33-67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0-10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in both Porites species and was associated with higher survivorship compared to M. capitata and P. acuta which exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However, M. capitata genets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.


Subject(s)
Anthozoa , Hydrozoa , Microbiota , Humans , Animals , Hydrogen-Ion Concentration , Seawater , Acclimatization , Climate Change , Death , Viverridae
5.
Sci Rep ; 13(1): 8957, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268692

ABSTRACT

Coral reefs are iconic examples of climate change impacts because climate-induced heat stress causes the breakdown of the coral-algal symbiosis leading to a spectacular loss of color, termed 'coral bleaching'. To examine the fine-scale dynamics of this process, we re-sampled 600 individually marked Montipora capitata colonies from across Kane'ohe Bay, Hawai'i and compared the algal symbiont composition before and after the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium in corals increased in most parts of the bay following the bleaching event. Despite this widespread increase in abundance of Durusdinium, the overall algal symbiont community composition was largely unchanged, and hydrodynamically defined regions of the bay retained their distinct pre-bleaching compositions. We explain ~ 21% of the total variation, of which depth and temperature variability were the most significant environmental drivers of Symbiodiniaceae community composition by site regardless of bleaching intensity or change in relative proportion of Durusdinium. We hypothesize that the plasticity of symbiont composition in corals may be constrained to adaptively match the long-term environmental conditions surrounding the holobiont, despite an individual coral's stress and bleaching response.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/physiology , Temperature , Coral Reefs , Heat-Shock Response , Dinoflagellida/physiology , Symbiosis , Hot Temperature
6.
Conserv Biol ; 37(4): e14061, 2023 08.
Article in English | MEDLINE | ID: mdl-36704891

ABSTRACT

Genetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome-scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data-sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever.


Importancia de la curación oportuna de metadatos para la vigilancia mundial de la diversidad genética Resumen La diversidad genética intraespecífica representa un nivel fundamental, pero a la vez subvalorado de la biodiversidad. La diversidad genética puede indicar la resiliencia de una especie ante el clima cambiante, por lo que su medición es relevante para muchos objetivos de la política de conservación mundial y nacional. Muchos estudios producen una gran cantidad de datos sobre la diversidad a nivel genético de las poblaciones silvestres, aunque la mayoría (87%) no incluye los metadatos espaciales y temporales asociados para que sean reutilizados en los programas de monitoreo o para reconocer la soberanía de las naciones o los pueblos indígenas. Realizamos un "datatón" distribuido para cuantificar la disponibilidad de estos metadatos faltantes y para probar la hipótesis que supone que esta disponibilidad se deteriora con el tiempo. También trabajamos para reparar los metadatos faltantes al extraerlos de los artículos asociados publicados, los repositorios en línea y la comunicación directa con los autores. Iniciamos con 838 candidatos de conjuntos de datos genómicos (representación reducida y genoma completo) tomados de la colaboración internacional para la base de datos de secuencias de nucleótidos y determinamos que 561 incluían en su mayoría muestras tomadas de poblaciones silvestres. Restauramos con éxito los metadatos espaciotemporales en el 78% de estos 561 conjuntos de datos (n = 440 conjuntos de datos con información sobre 45,105 individuos de 762 especies en 17 filos). El análisis de los artículos y los repositorios virtuales fue mucho más productivo que contactar a los 351 autores, quienes tuvieron un 45% de respuesta a nuestros correos. En general, el 23% de nuestras consultas descubrieron metadatos útiles. La probabilidad de recuperar metadatos espaciotemporales declinó de manera significativa conforme incrementó la antigüedad del conjunto de datos. Hubo una disminución anual del 13.5% en los metadatos asociados con los artículos publicados y los repositorios virtuales y hasta una disminución anual del 22% en los metadatos que sólo estaban disponibles mediante la comunicación con los autores. Este rápido deterioro en la disponibilidad de los metadatos, duplicado en estudios de otros tipos de datos biológicos, debería motivar la pronta actualización de las políticas del intercambio de datos y las prácticas de los investigadores para asegurar que en las ciencias de la conservación no se pierda para siempre el contexto valioso proporcionado por los metadatos.


Subject(s)
Conservation of Natural Resources , Metadata , Humans , Biodiversity , Probability , Genetic Variation
7.
J Fish Biol ; 102(3): 581-595, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36564830

ABSTRACT

The gap between spawning and settlement location of marine fishes, where the larvae occupy an oceanic phase, is a great mystery in both natural history and conservation. Recent genomic approaches provide some resolution, especially in linking parent to offspring with assays of nucleotide polymorphisms. Here, the authors applied this method to the endemic Hawaiian convict tang (Acanthurus triostegus sandvicensis), a surgeonfish with a long pelagic larval stage of c. 54-77 days. They collected 606 adults and 607 juveniles from 23 locations around the island of O'ahu, Hawai'i. Based on 399 single nucleotide polymorphisms, the authors assigned 68 of these juveniles back to a parent (11.2% assignment rate). Each side of the island showed significant population differentiation, with higher levels in the west and north. The west and north sides of the island also had little evidence of recruitment, which may be due to westerly currents in the region or an artefact of uneven sampling. In contrast, the majority of juveniles (94%) sampled along the eastern shore originated on that side of the island, primarily within semi-enclosed Kane'ohe Bay. Nearly half of the juveniles assigned to parents were found in the southern part of Kane'ohe Bay, with local settlement likely facilitated by extended water residence time. Several instances of self-recruitment, when juveniles return to their natal location, were observed along the eastern and southern shores. Cumulatively, these findings indicate that most dispersal is between adjacent regions on the eastern and southern shores. Regional management efforts for Acanthurus triostegus and possibly other reef fishes will be effective only with collaboration among adjacent coastal communities, consistent with the traditional moku system of native Hawaiian resource management.


Subject(s)
Perciformes , Animals , Larva/genetics , Hawaii , Perciformes/genetics , Fishes , Genomics
8.
PeerJ ; 10: e14176, 2022.
Article in English | MEDLINE | ID: mdl-36345483

ABSTRACT

Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at -80 °C to -20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses.


Subject(s)
Anthozoa , Coral Bleaching , Animals , Coral Reefs , Anthozoa/microbiology
9.
Sci Rep ; 12(1): 15093, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064734

ABSTRACT

Successional theory proposes that fast growing and well dispersed opportunistic species are the first to occupy available space. However, these pioneering species have relatively short life cycles and are eventually outcompeted by species that tend to be longer-lived and have lower dispersal capabilities. Using Autonomous Reef Monitoring Structures (ARMS) as standardized habitats, we examine the assembly and stages of ecological succession among sponge species with distinctive life history traits and physiologies found on cryptic coral reef habitats of Kane'ohe Bay, Hawai'i. Sponge recruitment was monitored bimonthly over 2 years on ARMS deployed within a natural coral reef habitat resembling the surrounding climax community and on ARMS placed in unestablished mesocosms receiving unfiltered seawater directly from the natural reef deployment site. Fast growing haplosclerid and calcareous sponges initially recruited to and dominated the mesocosm ARMS. In contrast, only slow growing long-lived species initially recruited to the reef ARMS, suggesting that despite available space, the stage of ecological succession in the surrounding habitat influences sponge community development in uninhabited space. Sponge composition and diversity between early summer and winter months within mesocosm ARMS shifted significantly as the initially recruited short-lived calcareous and haplosclerid species initially recruit and then died off. The particulate organic carbon contribution of dead sponge tissue from this high degree of competition-free community turnover suggests a possible new component to the sponge loop hypothesis which remains to be tested among these pioneering species. This source of detritus could be significant in early community development of young coastal habitats but less so on established coral reefs where the community is dominated by long-lived colonial sponges.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Hawaii , Seawater
10.
R Soc Open Sci ; 9(9): 212042, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36117869

ABSTRACT

The survival of most reef-building corals is dependent upon a symbiosis between the coral and the community of Symbiodiniaceae. Montipora capitata, one of the main reef-building coral species in Hawai'i, is known to host a diversity of symbionts, but it remains unclear how they change spatially and whether environmental factors drive those changes. Here, we surveyed the Symbiodiniaceae community in 600 M. capitata colonies from 30 sites across Kane'ohe Bay and tested for host specificity and environmental gradients driving spatial patterns of algal symbiont distribution. We found that the Symbiodiniaceae community differed markedly across sites, with M. capitata in the most open-ocean (northern) site hosting few or none of the genus Durusdinium, whereas individuals at other sites had a mix of Durusdinium and Cladocopium. Our study shows that the algal symbiont community composition responds to fine-scale differences in environmental gradients; depth and temperature variability were the most significant predictor of Symbiodiniaceae community, although environmental factors measured in the study explained only about 20% of observed variation. Identifying and mapping Symbiodiniaceae community distribution at multiple scales is an important step in advancing our understanding of algal symbiont diversity, distribution and evolution and the potential responses of corals to future environmental change.

11.
Ecol Evol ; 12(9): e9221, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36172294

ABSTRACT

Fish have one of the highest occurrences of individual specialization in trophic strategies among Eukaryotes. Yet, few studies characterize this variation during trophic niche analysis, limiting our understanding of aquatic food web dynamics. Stable isotope analysis (SIA) with advanced Bayesian statistics is one way to incorporate this individual trophic variation when quantifying niche size. However, studies using SIA to investigate trophodynamics have mostly focused on species- or guild-level (i.e., assumed similar trophic strategy) analyses in settings where source isotopes are well-resolved. These parameters are uncommon in an ecological context. Here, we use Stable Isotope Bayesian Ellipses in R (SIBER) to investigate cross-guild trophodynamics of 11 reef fish species within an oceanic atoll. We compared two- (δ 15N and δ 13C) versus three-dimensional (δ 15N, δ 13C, and δ 34S) reconstructions of isotopic niche space for interpreting guild-, species-, and individual-level trophic strategies. Reef fish isotope compositions varied significantly among, but also within, guilds. Individuals of the same species did not cluster together based on their isotope values, suggesting within-species specializations. Furthermore, while two-dimensional isotopic niches helped differentiate reef fish resource use, niche overlap among species was exceptionally high. The addition of δ 34S and the generation of three-dimensional isotopic niches were needed to further characterize their isotopic niches and better evaluate potential trophic strategies. These data suggest that δ 34S may reveal fluctuations in resource availability, which are not detectable using only δ 15N and δ 13C. We recommend that researchers include δ 34S in future aquatic food web studies.

12.
PeerJ ; 10: e13653, 2022.
Article in English | MEDLINE | ID: mdl-35873907

ABSTRACT

The global decline of coral reefs has driven considerable interest in active coral restoration. Despite their importance and dominance on mature reefs, relatively few coral restoration projects use slower growth forms like massive and encrusting coral species. Micro-fragmentation can increase coral cover by orders of magnitude faster than natural growth, which now allows cultivation of slow growing massive forms and shows promise and flexibility for active reef restoration. However, the major causes of variation in growth and survival of outplanted colonies remain poorly understood. Here, we report simple outplanting assays to aid in active reef restoration of slower growing species and increase the likelihood of restoration success. We used two different micro-fragmentation assays. Pyramid assays were used to examine variation associated with fragment size (ranging from ≈1-9 cm2), nursery residence time (for both in-situ and ex-situ nurseries), and 2D vs. 3D measurements of growth. Block assays were used to examine spatial variation among individual performance at outplanting sites in the field. We found 2D and 3D measurements correlated well, so measured survivorship and growth using top-down planar images for two of the main Hawaiian reef building corals, the plating Montipora capitata and the massive Porites compressa. Pyramid assays housed and outplanted from the in-situ nursery showed no effect of residence time or size on overall survivorship or growth for either species. Results from the ex-situ nursery, however, varied by species, with P. compressa again showing no effect of nursery residence time or size on survivorship or growth. In contrast, nursery culture resulted in improved survivorship of small M. capitata fragments, but net growth showed a weak positive effect of nursery time for medium fragments. Small fragments still suffered higher mortality than either medium or large fragments. Due to their lower mortality, medium fragments (≈3 cm2) appear to be the best compromise between growth and survivorship for outplanting. Likewise, given weak positive gains relative to the investment, our results suggest that it could be more cost-effective to simply outplant medium fragments as soon as possible, without intermediate culture in a nursery. Furthermore, the block assay revealed significant differences in survivorship and growth among sites for individuals of both species, emphasizing the importance of considering spatial variation in coral survival and growth following outplanting. These results highlight the value of using short-term micro-fragmentation assays prior to outplanting to assess size, and location specific performance, optimizing the efficiency of active reef restoration activities and maximizing the probability of success for active coral restoration projects.


Subject(s)
Anthozoa , Animals , Coral Reefs , Hawaii
13.
PeerJ ; 10: e13321, 2022.
Article in English | MEDLINE | ID: mdl-35669951

ABSTRACT

Elevated seawater temperatures associated with climate change lead to coral bleaching. While the ultimate causes of bleaching are well understood, the proximate physiological mechanisms underlying the bleaching response are not as well defined. Here we measured nitric oxide synthase activity, oxidative stress, and cell death in algal symbionts (Symbiodinaceae) freshly isolated from the reef-building coral Pocillopora acuta collected in the field under natural non-bleaching conditions and from corals experimentally exposed to elevated temperatures. Nitric oxide synthase activity in the algal symbionts was >3 orders of magnitude higher than that of the host and increased dramatically with increasing temperature and time of exposure (up to 72 h), consistent with the onset of bleaching for these corals. Oxidative stress and cell death among the algal symbionts were highest in coral holobionts exposed to intermediate as opposed to maximal temperatures, suggesting that these mechanisms are not proximal triggers for bleaching in this species. Our results point to nitric oxide production by the algal symbionts, rather than symbiont dysfunction, as a more important driver of coral bleaching under acute thermal stress in this coral.


Subject(s)
Anthozoa , Coral Reefs , Animals , Nitric Oxide/metabolism , Coral Bleaching , Anthozoa/metabolism , Oxidative Stress , Cell Death , Nitric Oxide Synthase/metabolism
14.
PeerJ ; 10: e13112, 2022.
Article in English | MEDLINE | ID: mdl-35345587

ABSTRACT

The drastic decline in coral coverage has stimulated an interest in reef restoration, and various iterations of coral nurseries have been used to augment restoration strategies. Here we examine the growth of two species of Hawaiian Montipora that were maintained in mesocosms under either ambient or warmed annual bleaching conditions for two consecutive years prior to outplanting to determine whether preconditioning aided coral restoration efforts. Using coral trees to create a nearby ocean nursery, we examined whether: (1) previous ex situ mesocosm growth would mirror in situ coral tree nursery growth; and (2) thermal ex situ stress-hardening would predict future success during natural warming events in situ for corals moved from tanks to trees. For Montipora capitata, we found that variation in growth was explained primarily by genotype; growth rates in the mesocosms were similar to those in situ, irrespective of preconditioning. Variation in M. flabellata growth, however, was explained by both genotype and culture method such that an individual M. flabellata colony that grew well in the tanks did not necessarily perform as well on the coral trees. For both species, previous exposure to elevated temperatures in the mesocosms provided no benefit to either growth or survival during a warming event in the coral tree nursery compared to those grown in ambient temperatures. Overall, M. capitata performed better in the tree nursery with higher net growth, lower mortality, and was subject to less predation than M. flabellata. Our results show little benefit of the additional cost and time of stress-hardening these corals prior to outplanting because it is unlikely to aid resilience to future warming events. These results also suggest that selecting corals for restoration based on long-term genotype growth performance may be more effective for optimal outcomes but should be weighed against other factors, such as coral morphology, in situ nursery method, location, and other characteristics.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , Hawaii , Species Specificity , Genotype , Oceans and Seas
15.
Sci Rep ; 12(1): 3712, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273199

ABSTRACT

Climate change poses a major threat to coral reefs. We conducted an outdoor 22-month experiment to investigate if coral could not just survive, but also physiologically cope, with chronic ocean warming and acidification conditions expected later this century under the Paris Climate Agreement. We recorded survivorship and measured eleven phenotypic traits to evaluate the holobiont responses of Hawaiian coral: color, Symbiodiniaceae density, calcification, photosynthesis, respiration, total organic carbon flux, carbon budget, biomass, lipids, protein, and maximum Artemia capture rate. Survivorship was lowest in Montipora capitata and only some survivors were able to meet metabolic demand and physiologically cope with future ocean conditions. Most M. capitata survivors bleached through loss of chlorophyll pigments and simultaneously experienced increased respiration rates and negative carbon budgets due to a 236% increase in total organic carbon losses under combined future ocean conditions. Porites compressa and Porites lobata had the highest survivorship and coped well under future ocean conditions with positive calcification and increased biomass, maintenance of lipids, and the capacity to exceed their metabolic demand through photosynthesis and heterotrophy. Thus, our findings show that significant biological diversity within resilient corals like Porites, and some genotypes of sensitive species, will persist this century provided atmospheric carbon dioxide levels are controlled. Since Porites corals are ubiquitous throughout the world's oceans and often major reef builders, the persistence of this resilient genus provides hope for future reef ecosystem function globally.


Subject(s)
Anthozoa , Acclimatization , Animals , Anthozoa/physiology , Coral Reefs , Ecosystem , Hawaii , Hydrogen-Ion Concentration , Lipids , Seawater , Temperature
16.
Ecol Evol ; 12(12): e9635, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590344

ABSTRACT

Giant clams are ecologically important, benefitting species of all trophic levels. But numerous populations have declined drastically in numbers due to past intensive exploitation that led to their listing in both CITES Appendix II and IUCN Red List of Threatened Species. However, giant clams are notoriously difficult to identify, and recent molecular work has revealed that morphological misidentification of giant clams have confounded current population assessments and extinction risk. The most recent study of the status of giant clams in the Samoan Archipelago was published in a journal over 20 years ago, without molecular corroboration of visual identifications. Using morphologic characteristics and ezRAD genetic techniques, we identify the existence of Tridacna noae in the Samoan Archipelago, presenting the first observation and a resulting range expansion. Accurately identifying the extant species in the archipelago is the first step toward a much-needed population status assessment to effectively manage these long-lived species.

17.
Sci Rep ; 11(1): 23787, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893672

ABSTRACT

The deep reef refuge hypothesis (DRRH) postulates that mesophotic coral ecosystems (MCEs) may provide a refuge for shallow coral reefs (SCRs). Understanding this process is an important conservation tool given increasing threats to coral reefs. To establish a better framework to analyze the DRRH, we analyzed stony coral communities in American Samoa across MCEs and SCRs to describe the community similarity and species overlap to test the foundational assumption of the DRRH. We suggest a different approach to determine species as depth specialists or generalists that changes the conceptual role of MCEs and emphasizes their importance in conservation planning regardless of their role as a refuge or not. This further encourages a reconsideration of a broader framework for the DRRH. We found 12 species of corals exclusively on MCEs and 183 exclusively on SCRs with another 63 species overlapping between depth zones. Of these, 19 appear to have the greatest potential to serve as reseeding species. Two additional species are listed under the U.S. Endangered Species Act, Acropora speciosa and Fimbriaphyllia paradivisa categorized as an occasional deep specialist and a deep exclusive species, respectively. Based on the community distinctiveness and minimal species overlap of SCR and MCE communities, we propose a broader framework by evaluating species overlap across coral reef habitats. This provides an opportunity to consider the opposite of the DRRH where SCRs support MCEs.

18.
PeerJ ; 9: e12063, 2021.
Article in English | MEDLINE | ID: mdl-34540369

ABSTRACT

BACKGROUND: Understanding region-wide patterns of larval connectivity and gene flow is crucial for managing and conserving marine biodiversity. Dongsha Atoll National Park (DANP), located in the northern South China Sea (SCS), was established in 2007 to study and conserve this diverse and remote coral atoll. However, the role of Dongsha Atoll in connectivity throughout the SCS is seldom studied. In this study, we aim to evaluate the role of DANP in conserving regional marine biodiversity. METHODS: In total, 206 samples across nine marine species were collected and sequenced from Dongsha Atoll, and these data were combined with available sequence data from each of these nine species archived in the Genomic Observatories Metadatabase (GEOME). Together, these data provide the most extensive population genetic analysis of a single marine protected area. We evaluate metapopulation structure for each species by using a coalescent sampler, selecting among panmixia, stepping-stone, and island models of connectivity in a likelihood-based framework. We then completed a heuristic graph theoretical analysis based on maximum dispersal distance to get a sense of Dongsha's centrality within the SCS. RESULTS: Our dataset yielded 111 unique haplotypes across all taxa at DANP, 58% of which were not sampled elsewhere. Analysis of metapopulation structure showed that five out of nine species have strong regional connectivity across the SCS such that their gene pools are effectively panmictic (mean pelagic larval duration (PLD) = 78 days, sd = 60 days); while four species have stepping-stone metapopulation structure, indicating that larvae are exchanged primarily between nearby populations (mean PLD = 37 days, sd = 15 days). For all but one species, Dongsha was ranked within the top 15 out of 115 large reefs in the South China Sea for betweenness centrality. Thus, for most species, Dongsha Atoll provides an essential link for maintaining stepping-stone gene flow across the SCS. CONCLUSIONS: This multispecies study provides the most comprehensive examination of the role of Dongsha Atoll in marine connectivity in the South China Sea to date. Combining new and existing population genetic data for nine coral reef species in the region with a graph theoretical analysis, this study provides evidence that Dongsha Atoll is an important hub for sustaining connectivity for the majority of coral-reef species in the region.

19.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34544862

ABSTRACT

Ocean-warming and acidification are predicted to reduce coral reef biodiversity, but the combined effects of these stressors on overall biodiversity are largely unmeasured. Here, we examined the individual and combined effects of elevated temperature (+2 °C) and reduced pH (-0.2 units) on the biodiversity of coral reef communities that developed on standardized sampling units over a 2-y mesocosm experiment. Biodiversity and species composition were measured using amplicon sequencing libraries targeting the cytochrome oxidase I (COI) barcoding gene. Ocean-warming significantly increased species richness relative to present-day control conditions, whereas acidification significantly reduced richness. Contrary to expectations, species richness in the combined future ocean treatment with both warming and acidification was not significantly different from the present-day control treatment. Rather than the predicted collapse of biodiversity under the dual stressors, we find significant changes in the relative abundance but not in the occurrence of species, resulting in a shuffling of coral reef community structure among the highly species-rich cryptobenthic community. The ultimate outcome of altered community structure for coral reef ecosystems will depend on species-specific ecological functions and community interactions. Given that most species on coral reefs are members of the understudied cryptobenthos, holistic research on reef communities is needed to accurately predict diversity-function relationships and ecosystem responses to future climate conditions.


Subject(s)
Acids/adverse effects , Anthozoa/physiology , Biodiversity , Climate Change , Coral Reefs , Ecosystem , Stress, Physiological , Animals , Hydrogen-Ion Concentration , Oceans and Seas
20.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34404731

ABSTRACT

Genomic data are being produced and archived at a prodigious rate, and current studies could become historical baselines for future global genetic diversity analyses and monitoring programs. However, when we evaluated the potential utility of genomic data from wild and domesticated eukaryote species in the world's largest genomic data repository, we found that most archived genomic datasets (86%) lacked the spatiotemporal metadata necessary for genetic biodiversity surveillance. Labor-intensive scouring of a subset of published papers yielded geospatial coordinates and collection years for only 33% (39% if place names were considered) of these genomic datasets. Streamlined data input processes, updated metadata deposition policies, and enhanced scientific community awareness are urgently needed to preserve these irreplaceable records of today's genetic biodiversity and to plug the growing metadata gap.


Subject(s)
Biodiversity , Data Accuracy , Eukaryota/genetics , Genetic Variation , Genome , Genomics/methods , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...